Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign
نویسندگان
چکیده
Intermittent coherent structures can be responsible for a large fraction of the exchange between a forest canopy and the atmosphere. Quantifying their contribution to momentum and heat fluxes is necessary to interpret measurements of trace gases and aerosols within and above forest canopies. The primary objective of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign (10 July 2009 to 9 August 2009) was to study the chemistry of volatile organic compounds (VOC) within and above a forest canopy. In this manuscript we provide an analysis of coherent structures and canopy-atmosphere exchange during CABINEX to support in-canopy gradient measurements of VOC. We quantify the number and duration of coherent structure events and their percent contribution to momentum and heat fluxes with two methods: (1) quadrant-hole analysis, and (2) wavelet analysis. Despite differences in the duration and number of events, both methods predict that coherent structures contribute 40–50 % to momentum fluxes and 44-65 % to heat fluxes during the CABINEX campaign. Contributions associated with coherent structures are slightly greater under stable atmospheric conditions. By comparing heat fluxes within and above the canopy, we determine the degree of coupling between upper canopy and atmosphere, and find that they are coupled the majority of the time. Uncoupled canopyatmosphere events occur in the early morning (4–8 a.m. local time) approximately 30 % of the time. This study conCorrespondence to: A. L. Steiner ([email protected]) firms that coherent structures contribute significantly to the exchange of heat and momentum between the canopy and atmosphere at the CABINEX site, and indicates the need to include these transport processes when studying the mixing and chemical reactions of trace gases and aerosols between a forest canopy and the atmosphere.
منابع مشابه
In-canopy gas-phase chemistry during CABINEX 2009: sensitivity of a 1-D canopy model to vertical mixing and isoprene chemistry
Vegetation emits large quantities of biogenic volatile organic compounds (BVOC). At remote sites, these compounds are the dominant precursors to ozone and secondary organic aerosol (SOA) production, yet current field studies show that atmospheric models have difficulty in capturing the observed HOx cycle and concentrations of BVOC oxidation products. In this manuscript, we simulate BVOC chemist...
متن کاملOn Coherent Structures of Turbulent Open-channel Flow Above a Rough Bed
Present study examines turbulent structures of a rough bed open-channel flow in the context of deterministic approach. Instantaneous velocity field is measured in different hydraulic conditions using two dimensional Particle Image Velocimetry (PIV) in vertical plane and Stereoscopic PIV in horizontal plane. Different techniques and quantities such as swirl strength, two-point and cross-correlat...
متن کاملModified Structure Function Model Based on Coherent Structures
In the present study, a modified Structure Function was introduced. In this modified Structure Function model, the coefficient of model was computed dynamically base on the coherent structure in the flow field. The ability of this Modified Structure Function was investigated for complex flow over a square cylinder in free stream and a low aspect ratio cylinder confined in a channel. The Results...
متن کاملاستفاده از POD در استخراج ساختارهای متجانس یک میدان آشفته آماری- همگن
Capability of the Proper Orthogonal Decomposition (POD) method in extraction of the coherent structures from a spatio-temporal chaotic field is assessed in this paper. As the chaotic field, an ensemble of 40 snapshots, obtained from Direct Numerical Simulation (DNS) of the Kuramoto-Sivashinsky (KS) equation, has been used. Contrary to the usual methods, where the ergodicity of the field is need...
متن کاملMomentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment
Momentum and scalar (heat and water vapor) transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out), and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable). Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelat...
متن کامل